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Universal properties of interacting Brownian motors

Yashar Aghababaie,* Gautam I. Menon, and Michael Plischke
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 19 August 1998!

We study the effects of interactions in ratchet models for one-dimensional Brownian motors. In these
models, directed motion of a single particle~the motor! is produced by subjecting it to the action of a
one-dimensional time-dependent asymmetric potential and thermal noise. We consider here the collective
behavior of a finite density of such motors that move on a line and interact with each other through excluded
volume interactions. We show that the density-density correlation function, calculated in the steady state,
exhibits dynamical scaling at long wavelengths and times. Our Monte Carlo simulations support the conjecture
that the hydrodynamic properties of interacting Brownian motors are governed by the Kardar-Parisi-Zhang
universality class@Phys. Rev. Lett.56, 889 ~1986!#. We demonstrate numerically that the effective noise
governing the stochastic dynamics in a coarse-grained version of our model has short-range spatial correla-
tions. Our results should be applicable to a wide variety of models for Brownian motors with short-range
interactions.@S1063-651X~99!01802-4#

PACS number~s!: 05.40.Jc, 87.10.1e, 05.60.Cd, 87.19.Rr
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I. INTRODUCTION

Molecular motors are proteins or protein complexes t
transduce chemical energy into mechanical work. Ignor
molecular detail, these motors~kinesins, dyneins, and myo
sins! can be visualized as compact objects moving with a
drift velocity along a line~a tubulin filament for kinesins and
dyneins, an actin filament for myosins!. Such motors play an
important role in the transport of cargo along the axons
nerve cells, muscle contraction, and cell motility@1,2#.

While the three families of molecular motors differ
detail, they share a few common physical properties. F
there is a directionality to the motion of such molecules th
for linear motors, can be associated with the polarity of
tracks on which they move. Second, the tracks themse
can be idealized as rigid, periodic, one-dimensional str
tures@3#. Third, the irreversible conversion of the chemic
energy obtained from adenosine triphosphate hydrolysis
work breaks detailed balance. Finally, all molecular mot
operate in a regime dominated by the randomizing effect
Brownian noise. Such noise has zero mean and hence ca
acting alone, produce directed motion. Molecular mot
must therefore ‘‘rectify’’ Brownian forces if they are to ex
hibit a drift velocity in the absence of a net time-averag
force. The problem of modeling molecular motors can th
be set in the more general context of ‘‘Brownian motor’’
‘‘thermal ratchet’’ models for the extraction of useful wor
from thermal fluctuations.

Models for Brownian motors can be divided into the fo
lowing three classes@3–8#: A, ‘‘fluctuating force’’ models, in
which a point particle is placed in a periodic, asymmet
time-independent potential and subjected to a stocha
force with non-Gaussian correlations;B, ‘‘fluctuating poten-
tial’’ models, in which the particle is driven both by Gaus
ian white noise and a time-dependent asymmetric poten

*Present address: Department of Physics, McGill Univers
3600 University Street, Montreal, Quebec, Canada H3A 2T8.
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and C, ‘‘particle fluctuating between states’’ models,
which the particle is driven by Gaussian white noise, wh
an internal state of the particle determines the static as
metric potential it experiences. This internal state is its
determined by a stochastic dynamics that does not obey
tailed balance. The combination of a single particle with
asymmetric~ratchet! potential, thermal noise, and an extern
forcing that violates detailed balance is called a therm
ratchet.

The models we study here generalize models of typeB to
incorporate a finite density of interacting particles. We a
dress the following question: What is the appropriate hyd
dynamic description of density fluctuations in a collection
interacting Brownian motors on a ring? We will assum
these interactions to be of a simple excluded volume fo
although any interparticle interaction that is neither too lo
ranged nor allows particles to interpenetrate should yield
same results. At the level of nonuniversal properties, ear
work has shown that excluded volume interactions can af
both the magnitude and the direction of the current in a n
trivial manner @9#. In contrast, we study here the scalin
behavior of fluctuations in the nonequilibrium steady state
such an interacting system to extract universal features
models for interacting Brownian motors. Universality im
plies that our conclusions should be independent of the
tailed nature of the potential chosen, the density of intera
ing particles, and the switching rate between potential sta
except possibly at isolated points in parameter space. M
aspects of the discussion here should apply to fluctua
force ~classA! and particle fluctuating between states~class
C! models as well, provided the time correlations of the flu
tuating force or the stochastic interstate dynamics are not
long ranged.

For simplicity, we study latticized versions of our~in gen-
eral! continuum models and examine the scaling proper
of the intermediate scattering functionSr(k,t) defined by

Sr~k,t !5
1

N
^dr~k,0!dr~2k,t !&, ~1.1!,
2578 ©1999 The American Physical Society
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whereN is the number of particles,k is 2np/L, n50,61,
62, . . . ,L/2, andL is the system size. Heredr(k,t) is the
Fourier component with wave vectork of the deviation from
the mean local density,dr(x,t)5r(x,t)2^r(x)&, with the
angular brackets denoting a time average.

Transforming the density fieldr(x,t) to a ‘‘height’’ field
h(x,t) via r(x,t)5]xh(x,t) and imposing helical boundar
conditions on h(x,t) to satisfy the constraint*0

Lr(x,t)
5h(L)2h(0)5N, Sr(k,t) can be related to the structur
factor

S~k,t !5^dh~k,0!dh~2k,t !&, ~1.2!

wheredh(k,t) is the Fourier transform ofh(x,t)2^h(x)&.
For smallk and larget, i.e., in the hydrodynamic limit, if
S(k,t) exhibits dynamical scaling, we can write

S~k,t !;k221hF~kzt !, ~1.3!

whereh andz are scaling exponents andF is a scaling func-
tion.

The basic result of this paper is that these scaling pro
ties are described by the Kardar-Parisi-Zhang~KPZ! @10#
equation. This Langevin equation@10#

]h

]t
5n¹2h1

l

2
~¹h!21z~x,t ! ~1.4!

describes the long-time, long-wavelength behavior of a nu
ber of nonequilibrium systems@11,12#. Equation ~1.4! is
written in a form appropriate for surface models, whe
h(x,t) is the height, relative to ad-dimensional substrate, o
a growing interface andz(x,t) represents Gaussian whi
noise. This equation was originally proposed as a gene
zation of the Edwards-Wilkinson~EW! equation @13# (l
50 in the above! to describe the interfacial width of cluste
in the Eden model as well as the scaling properties of sev
other models for interface growth. The KPZ and EW equ
tions govern distinct universality classes of dynamical
havior with scaling solutions characterized by the expone
z and h. The exponenth determines the long-wavelengt
properties of equal-time height-height correlations in
steady state~the conventional roughness exponenta is re-
lated toh throughh5122a), while z describes the wave
vector dependence of relaxation functions. For the K
equation, owing to the existence of a fluctuation-dissipat
theorem, these exponents can be obtained exactly ford51
and take on the valuesz53/2 andh50. The exact solution
of the linear EW equation yieldsz52 andh50.

An intuitive way of understanding the relation of mode
for interacting Brownian motors to the KPZ equation is t
following. Coarse-grain microscopic configurations of su
models in space and time. At spatial scales larger than
repeat distancel of the periodic potential and on time scal
much larger than the typical time scalet over which the
potential changes, the system will appear to have a cons
density on average, as well as a constant current. Supe
posed on this constant density are spontaneous fluctua
that obey a local conservation law. The effects of interp
ticle interactions at the largest length scales can be sum
rized in the following observation: These density fluctuatio
are convected with a speed that depends on their magnit
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Consider now an apparently unrelated model, that of
stochastic dynamics of a finite densityr of hard-core par-
ticles on a line, which hop individually with rate (11e)/2 to
the right and (12e)/2 to the left, provided the exclude
volume constraint is satisfied. Such a system, the ‘‘asymm
ric exclusion process’’~ASEP! for eÞ0, has a net particle
currentJ5er(12r). The symmetry breaking that results
a constant current in the ASEP is an explicit consequenc
the asymmetry in the hopping rates. This symmetry break
is to be contrasted with the more subtle symmetry break
in the case of the ratchet models, where a net curren
obtained by switching between rates that individually sati
detailed balance.

Density-density correlations for the ASEP are known
be governed by KPZ exponents@14# through a Bethe ansat
solution of the associated quantum model in the fully asy
metric (e51) limit @15,16# and extensive numerical work in
the more general partially asymmetric case. Since both m
els share the feature expected to be most relevant to a hy
dynamic description, the existence of a nontrivial densi
dependent current, it is reasonable to conjecture that t
should belong to the same universality class, irrespective
the fact that the detailed origin of the symmetry breaking
different in each case.

The organization of this paper is as follows. In Sec. II w
describe the two models we study in this work. Section
discusses the relevant theory. We prove that the current
function of density is symmetric about half filling for a larg
class of interacting ratchet models, including ours. We
view briefly previous work on driven diffusive systems an
provide a~nonrigorous! derivation of a continuum equatio
for the time evolution of the particle density. In Sec. IV w
describe the Monte Carlo simulations we have performed
test dynamical universality in interacting Brownian moto
We present conclusions and possible directions for furt
study in Sec. V.

II. MODELS

In the simplest versions of the fluctuating potential mo
els @5,6,8# individual motor particles experience a time
dependent potentialV(x,t)5h(t)U(x) in addition to ran-
dom Brownian forces with zero mean value. HereU(x) is
periodic with periodl , i.e.,U(x1l )5U(x), and an asym-
metric function ofx, i.e., U(x)ÞU(2x). The time depen-
dence ofV(x,t) is governed by a~stochastic or determinis
tic! switching functionh(t), which takes the values 0 and 1
For concreteness and in agreement with previous work
noninteracting Brownian motors, we will assumeU(x) to be
of the sawtooth form

U~x!5ax ~0<x<al !

~2.1!
5b~ l 2x! ~al <x<l !,

with a,b.0, aal 5bl (12a), anda,1. The switching of
the potential occurs independently of the state of the mot
thus breaking detailed balance. Together with the lack
reflection symmetry inU(x), this switching generates a ne
particle current. Therefore, Brownian motors exhibit mac
scopic motion along a periodic potential by extracting use
work from nonequilibrium fluctuations.
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We can see how this current arises with the followi
argument. In the ‘‘flat’’ state of the potential for whichh
50 @see Fig. 1~a!#, a single particle will diffuse isotropically
When the potential is switched to the ‘‘up’’ orh51 state, it
is more likely to be found in a region of space where
experiences a net force to the left than to the right. Repe
cycling betweenh50 andh51 states generates a net m
tion of the particle.

Our first model, which we will call model I, generalize
the above model for the action of a single Brownian motor
a finite numberN of interacting motors on a one-dimension
lattice. These motors hop to unoccupied nearest neigh
sites with rates determined by the discretized potential in
~2.1!. Our discretization ensures that a motor occupies o
one lattice site at a time and the hard-core constraint imp
that at most one motor occupies a single lattice site.

Our second model, model II, differs from model I in th
choice of the two potential states experienced by the mot
Each particle now experiences a potentialV(x,t)
5h(t)U(x)1@12h(t)#U(x1l /2). The flat potential in
model I is thus replaced with a shifted version of the perio
potential. In this case the current is a result of the partic
sliding to the valley of the sawtooth. When the potential
switched, particles in energetically unfavorable locatio
slide to the valleys of the new potential. In both mode
repetition of the switching procedure results in a net tim
averaged current.

We use periodic boundary conditions in the numeri
simulations described here. In both models an elemen
step consists of either an attempt of a particle to hop t
neighboring site or an attempt to switch the potential. T
transition rates between configurations satisfy deta
balance with Metropolis rates, P($s̄8%→$s̄%)
5min„1,exp@H($s̄8%)2H($s̄%)#…. Here $s% indexes allowed

FIG. 1. Schematic representation of models. The filled circ
represent particles. In~a!, depicting model I, hard-core particles ca
sit on either a pinning potential~here a skew sawtooth! or a flat
potential. In~b! model II is shown. The particles can sit on one
two sawtooth potentials, which are shifted relative to each othe
half the potential period. In both cases the switching between
tentials is configuration independent, while the rates for the p
ticles’ movement on each of the potentials satisfies detailed bala
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configurations of the motors on the lattice andH($s%) is the
energy of the configuration. The switching of the potenti
occurs stochastically and is governed by an exponential
tribution of waiting times.

The parameters in the models are the following. Ea
period of the potential containsW lattice sites, all of which
we assign to the segment of the potential with positive slo
The length of the systemL is measured in periods of th
sawtooth. The maximum height of the sawtooth potentia
V and we definer 5exp@2 V/kBT(W21)#. Finally, the param-
etersP01 andP10 represent the probabilities that the potent
changes fromh50 to h51 and vice versa.

In terms of these parameters the hopping probabilities
the sawtooth are chosen to be

P~ i→ i 11!55
r

11r
if 0< i ,W21

1

11r W21
if i 5W21,

P~ i 11→ i !55
1

11r
if 0< i ,W21

r W21

11r W21
if i 5W21,

where we have indexed the lattice sites from 0 at the po
tial minimum.

III. THEORY

A number of driven lattice gases with excluded volum
interactions exhibit a current densityJ(r) that is symmetric
aboutr5 1

2 . Two examples are the ASEP~or the biased ran-
dom walk!, whereJ(r) is parabolic aboutr51/2, and mod-
els with strong disorder@17#, where the current is a mor
complicated function of density.

This exact particle-hole symmetry is a feature of the mo
els we study as well and can be obtained through sim
arguments. Consider a finite densityr of particles moving in
the time-dependent ratchet potentialV(x,t) defined in the
preceding section. The time-averaged particle current
only be a function of the time-dependent potentialV(x,t)
and the densityr. The statement of particle-hole symmetry
then

J„r;V~x,t !…5J„12r;V~x,t !…, ~3.1!

which relates currents at densitiesr and 12r for the same
microscopic time-dependent potential.

Note now that the relation

J„r;V~x,t !…52J„12r;2V~x,t !… ~3.2!

holds exactly. To see this, consider the one-to-one mapp
between particle configurations at densityr and ‘‘hole’’ or
‘‘vacancy’’ configurations at density 12r, where holes are
assigned to sites that are unoccupied in the particle confi
ration. Every particle hop, say to the right, correspon
uniquely to the hopping of a hole in the opposite directi
~left! at the same rate. The hole current thus precisely eq
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the negative of the particle current. The hopping rates for
holes can be obtained from the hopping rates for the parti
by reversing particle hopping rates about each bond. I
easy to see that such rates can be derived from the pote
2V(x,t) for the Metropolis rates used in this paper and m
generally for any update scheme that uses rates that sa
detailed balance.

To prove Eq.~3.1! it is thus sufficient to show

J„r;V~x,t !…52J„r;2V~x,t !…. ~3.3!

A strategy that works for the potentials we consider here i
consider the parity transformed potentialVR(x,t), obtained
from the definitionVR(x,t)5V(2x,t). Such a parity trans-
formation is equivalent to interchanging the definitions
left and right and cannot alter the magnitude of the curre
We thus have

J„r,VR~x,t !…52J„r,V~x,t !…. ~3.4!

Since V(x,t) is not reflection symmetric, this relation be
tween currents for different ratchet potentials related to e
other by a parity transformation is a nontrivial one.

For sawtooth potentials of the type defined in Eq.~2.1!,
VR(x,t) and 2V(x,t) are related through a trivial shift@of
aal in they direction andl (12a) in thex direction#. This
shift cannot change the net current as it merely correspo
to a choice of the zero of the potential~which is irrelevant to
the calculation of forces and hence hopping rates! and of the
origin. Putting these results together we now have

J„r,2V~x,t !…5J„r,VR~x,t !…52J„r,V~x,t !…, ~3.5!

thus proving Eq.~3.1!.
While our proof is exact for sawtooth potentials of th

type discussed here@and more generally for periodic poten
tials whose Fourier coefficients (an ,bn) are related through
tan(nu)5an /bn with u a non-trivial angle#, we believe that
particle-hole symmetry may hold more generally in simi
lattice gas models for interacting Brownian motors. Inde
for the disordered fully asymmetric exclusion process, s
particle-hole symmetry holds to a high degree of numer
accuracy@17#. This feature is not well understood, althoug
there have been recent attempts at a proof of this result@18#.
We note in passing that there do exist excluded volume m
els of motors that do not display particle-hole symmetry@9#.
These models, however, are not lattice gas models but
tinuum ones where the numerical discretization is not sca
to the particle size.

We now describe a phenomenological derivation of
KPZ equation from simple hydrodynamic arguments@12#.
Consider our microscopic model for interacting Browni
motors and coarse grain the density field of the interac
motors over the microscopic periodl of the potential. The
density field is now uniform on average, with a tim
averaged value ofr0. Coarse graining in time over tim
scales larger than the periodt over which the potentia
changes eliminates the microscopic time scale associ
with the switching of the potential. At length and time sca
much larger thanl andt, we are dealing with a system tha
is, on average, uniform in both space and time.
e
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The exact conservation of particle number must hold
the coarse-grained density field and can be expressed in
form of a continuity equation

]r~x,t !

]t
52]xJ„r~x,t !,]xr~x,t !, . . . …, ~3.6!

where J„r(x,t),]xr(x,t), . . . … is the particle current. This
current is, in general, a function ofr(x,t) as well as its
gradients. Decomposing the density field as

r~x,t !5r01dr~x,t !, E
0

L

dx dr~x,t !50, ~3.7!

we can expand

J„r~x,t !,]xr~x,t !, . . . …

5J~r0!2c0dr~x,t !2
1

2
c1~dr!2

2D]xdr2z~x,t !1¯. ~3.8!

Herec0 is the ‘‘kinematic wave velocity’’ or the group ve
locity with which density fluctuations in the system are co
vected,c1 is the coefficient of the relevant nonlinear term,D
is a diffusion coefficient, andz(x,t) represents the effects o
random fluctuations. Restoring these terms to the equatio
motion and ignoring higher-order irrelevant terms, we obt
an equation derived by van Beijeren, Kutner, and Spohn
the context of one-dimensional driven lattice gases@14#:

]dr~x,t !

]t
5c0]xdr~x,t !1c1dr~x,t !]xdr~x,t !

1D]x
2dr~x,t !1]xz~x,t !. ~3.9!

This equation without the noise term@i.e.,z(x,t)50] was
originally studied by Burgers in the context of the on
dimensional Navier-Stokes equation. The corresponde
between the KPZ equation and the noisy Burgers equa
can be seen as follows. We first perform a Galilean trans
mation on the Burgers equation to remove the linear term
]xdr; this is equivalent to transforming to the comovin
frame of the density wave. Usingdr(x,t)5]xh(x,t) and
substituting in Eq.~3.9!, we obtain the KPZ equation@Eq.
~1.4!#.

To map particle configurations in our lattice model
height configurations, associate a surface element with s
1 to a particle and a slope of21 to a vacancy or hole. The
dynamics of the height field is related to the dynamics of
particles in the following way: A particle hop to the left from
site i is identified with an evaporation event from sitei ,
while a particle hop to the right corresponds to deposition
growth at sitei 11 @19–21#. A net current in the particle
language then translates into a surface that grows on ave
at a constant rate. This mapping between particle config
tions and height configurations follows the ‘‘single-step
model defined in Ref.@20#, although the underlying particle
dynamics that generates the dynamics of the height fiel
more complicated in our case.
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Critical exponents are typically measured through cor
lation functions. In our simulations we measured the rel
ation function@14#

F~k,t ![
^r̂~2k,0!r̂~k,t !&2^r̂~2k,0!&^r̂~k,t !&

^r̂~2k,0!r̂~k,0!&2^r̂~2k,0!&^r̂~k,0!&

5
Sr~k,t !

Sr~k,0!
~3.10!

in the comoving frame of reference. AlthoughF is properly
a function of the two variablesk and t separately, the dy-
namical scaling hypothesis suggests that it can be writte
the form F(kzt) for an appropriately chosenz. As shown
initially by Forster, Nelson, and Stephen@22# for the ran-
domly forced Burgers equation and later by Kardar, Par
and Zhang@10# for surface growth,z is 3

2 in one dimension.
The free-field or Edwards-Wilkinson value isz52 @13#.

In addition, we measured the value of the hydrodynam
exponenth through the steady-state structure factor

S~k!5 lim
t→`

^ĥk~ t !ĥ2k~ t !&, ~3.11!

where

ĥk~ t !5
1

~LW!1/2(j 51

LW

@hj~ t !2^hj~ t !&# ei jk .

The structure factor diverges for smallk as k221h, where
h50 for both the EW and KPZ equations.

IV. COMPUTER SIMULATIONS

In this section we outline the Monte Carlo~MC! algo-
rithm used in our simulations and present our numerical
sults. In our simulations, we measured time in units of M
steps~MCS!, where a single MC step consists ofN cycles of
the basic algorithmic step. In each cycle we attempted ei
a switching of the potential or a particle move. Our mo
extensive studies were done with parameter values
maximized the current, i.e., at half filling for the mode
considered here. This choice minimizes the crossover f
the EW regime to KPZ behavior sincel is proportional to
the curvature of theJ vs r curve, which is maximized at hal
filling.

We usedW510 lattice sites per well in all of our simu
lations. For model I we tookr 50.05, P0150.03, andP10
50.04. For model II the parameter values used werer
50.01 and P015P1050.02. Typically we waited
(23104) – (53104) MCS for the system to equilibrate be
fore recording data for currents and correlation functio
The quantitiesF(k,t) and S(k,t) were averaged over 104

configurations forL<128, while we averaged over 33103

configurations forL5256.
The J(r) vs r curves for models I and II are shown i

Figs. 2 and 3. The symmetry of the curves aboutr51/2 is
very accurate for largeL, in accord with the theoretical ex
pectation of particle-hole symmetry.

We measured the critical exponents of our modelsz andh
through the relaxation functionF(k,t) and the structure fac
-
-

in

i,

c

-

er
t
at

m

.

tor S(k), respectively. In order to discount small waveleng
correlations of the density due to the potential shape,
coarse grained the density over one potential period by s
ming the occupations of the interior sites and assigning
number to a single~reduced! site. The largest lattice we con
sidered in detail hadL5256 wells; the discretization to 10
sites per well implies that our systems had at most 25
lattice sites.

An estimate of the effective dynamical expone
ze f f(L,r) was obtained in the following way. The data fo
F(k,t) for a given density and system size were plotted
functions of the scaled variableskzt for variousz. The value
of z that provided the best visual collapse of the data w
taken to beze f f . Examples of this data collapse are shown
Figs. 4 and 5 for models I and II at half filling forL5128,
yielding ze f f51.60 and 1.59, respectively. For both mode
the relaxation function generically has two distinct branch
For the smallest value ofk, k52p/L, the relaxation function
decays more slowly than for larger values ofk. Both figures
contain data fork52p j /L for j <5. For j .1 the data col-
lapse to high accuracy onto a single curve. This separatio

FIG. 2. Dependence of the steady-state currentJ(r) on the av-
erage densityr of particles for model I with 32<L<256.

FIG. 3. Dependence of the steady-state currentJ(r) on the av-
erage densityr for model II with 32<L<256.
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the relaxation function into two branches~with j 51 the spe-
cial case! is also a feature of the single-step model@20#.

We have carried out this analysis systematically forL
532– 256 as a function ofr. The effective exponents
ze f f(L,r) for models I and II are plotted as functions ofr in
Figs. 6 and 7, respectively. The conservative error bars
flect the somewhat subjective procedure of identifying
‘‘best’’ value of z by inspection. However, the systemat
dependence of this effective exponent on bothr and L is
quite striking. First, it is clear that the data support the c
clusionze f f(L,r)5ze f f(L,12r), consistent with the genera
particle-hole symmetry discussed above for the current. S
ond, there is a systematic decrease of the effective expo
ze f f asL is increased for allrÞ0, with the smallest values
occurring atr50.5, as expected theoretically. The smalle
value ofz was found to be 1.5860.01 for model I and 1.56
60.01 for model II, calculated in both cases forL5256. We
conclude that in the thermodynamic limitz(r) approaches

FIG. 4. Relaxation functionF(k,t) for model I forL5128 and
r50.5 plotted as a function of the scaled variablekzt for z51.60.
We show data for the five smallest values ofk52p j /L, with j
51, 2, 3, 4, and 5.

FIG. 5. Relaxation functionF(k,t) for model II for L5128 and
r50.5 plotted as a function ofkzt for z51.59. The values ofk are
the same as in Fig. 4.
e-
e
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nt
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the value3
2 , consistent with the predictions of the KPZ equ

tion.
We have also calculated the hydrodynamical exponenh

through the time-independent structure factor in Eq.~3.11!.
For both models we foundh50.060.01 for all densities and
all system sizes.

If one assumes that the KPZ equation describes th
models then one can in fact predict the dependence of
measured effective exponentze f f on L, following recent
work by Neergaard and den Nijs@23# on crossover scaling
functions appropriate to one-dimensional growth models
the KPZ universality class. Neergaard and den Nijs prov
the asymptotic form

m.A/Lz01B/Lz1 . ~4.1!

HereA andB are constant for fixed KPZ coupling consta
l, m is the mass gap of the associated finite~of sizeL) spin
chain, andz0 and z1 are the dynamical critical exponen
associated with the EW and KPZ universality classes,
z052 and z151.5. The effective exponentze f f(L) is ob-

FIG. 6. Effective exponentze f f(L,r) plotted as a function ofr
for model I and systems of size 32<L<256. Note the systematic
decrease ofze f f asL is increased at constant density.

FIG. 7. Effective exponentze f f(L,r) for model II.
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tained fromze f f(L)52](ln m)/](ln L). If ze f f is close to 1.5,
simple algebra gives the leadingL dependence as

ze f f~L !.1.51C/AL, ~4.2!

whereC is a constant. This indicates that the approach to
asymptotic value of 1.5 is of a square root form. Figure
and 9 show that an approximate fit to such a correction
consistent with the data, although there are large inhe
errors in this procedure given that the measuredze f f is ob-
tained directly from a simulation.

We have implicitly assumed that the effective noise go
erning the behavior of interacting Brownian motors is sh
ranged in both space and time. This is an important is
since correlated noise is known to affect the scaling prop
ties of the KPZ equation@24#. We have studied the validity
of this assumption through an approximate numerical pro
dure related to the ‘‘inverse method’’ introduced by Lam a
Sander@25# to study the effective hydrodynamic equatio
governing the behavior of interface models in the KPZ a
EW universality class. To illustrate this procedure, assu

FIG. 8. Effective exponentze f f(L,r) plotted as a function ofL
for r50.5 for model I. The curve is a fit to the functional form~4.2!
obtained from the KPZ equation.

FIG. 9. Effective exponentze f f(L,r) plotted as a function ofL
for r50.5 for model II. As in Fig. 6, the curve is a fit to Eq.~4.2!.
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that the effective equation governing the dynamics of
height variableh(x,t) in our models can be written as

]h

]t
5F~]xh,]x

2h, . . . !1h~x,t ! . ~4.3!

We have grouped the terms governing the deterministic e
lution of the surface intoF(]xh,]x

2h, . . . ), in general allow-
ing for more complex~although irrelevant in the hydrody
namic limit! terms than those retained in the KPZ equatio
We have also separated the noise terms intoh(x,t), which
we assume, without loss of generality, to have zero m
value.

Evolving the surface configuration at timet forward to
h(x,t1Dt), we can write the effective noise term as

S h~x,t1Dt !2h~x,t !2F~]xh,]x
2 , . . . !Dt

Dt
D 5h~x,t ! .

~4.4!

Note that this procedure generates an ensemble of value
the stochastic noise termh(x,t). We can now compute the
equal-time correlations of the noise by averagi
^h(x,t)h(x8,t)& obtained from Eq.~4.4!, by evolving sys-
tems initially chosen to be representative of the steady s
@26#.

To implement this procedure, we generated a sequenc
k typical steady-state configurations (C1 ,C2 , . . . ,Ck) for
model I by evolving the system for 23104 MCS. Each of
these configurations in turn was evolved for a short timeDt
using m different initial random seeds. Such a procedu
generates inequivalent histories of the system starting f
the same steady-state configuration. The deterministic pa
the evolution for thei th typical initial profile can then be
extracted from

Fi~]xh,]2h, . . . !Dt5
1

m(
j 51

m

@hj
i ~x,t1Dt !2hj

i ~x,t !# .

~4.5!

Once this has been obtained, the equal-time noise-noise
relation function can be constructed for each of theCk con-
figurations by averaging over stochastic histories. We a
average over the ensemble of initial steady-state config
tions. Our results are displayed for model I withL532 in
Fig. 10. It is clear that any spatial correlations are extrem
short ranged and clearly not of the power-law form requir
to affect the exponentsz andh @24,27#.

V. CONCLUSIONS

In this paper we have presented numerical evidence
intuitive arguments to support the conjecture that the hyd
dynamic properties of interacting Brownian motors belong
the universality class of the Kardar-Parisi-Zhang equati
This conjecture was motivated by the reasonable guess
microscopic configurations in such models, upon appropr
coarse graining, should yield the same macroscopic phy
as the ASEP.

We now discuss models of typesA andC defined in the
Introduction. In view of the generality of the results we d
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scribe here, which depend only on the fact that expanding
uniform particle current in the density field to second ord
yields a relevant KPZ nonlinearity, we would expect that t
hydrodynamic properties of these models should be g
erned by KPZ exponents, as is the case here. The only c
ats are the following. In general, while KPZ scaling wou
be expected in the asymptotic limit, the approach to this li
may be obscured by crossover effects. These are model
cific and, in general, some optimization might be required
such asymptotic scaling to be easily visible. Also, the co
ficient of the nonlinear terml may vanish at isolated point
in parameter space for general models. In such cases,
would expect EW exponents precisely at those points
crossover behavior in their vicinity. Finally and perhaps m
importantly, the effective noise governing the microsco
degrees of freedom must have only finite-range correlati
in space and time. For the KPZ equation with colored no
a smooth variation of dynamical exponents such asz has
been predicted if the noise has sufficiently long-range co
lations@24#. It is not obvious that the hydrodynamic prope
ties of interacting Brownian motors with an effective color
noise can be mapped directly onto an appropriately gene
ized KPZ equation. However, we reiterate that the results

FIG. 10. Equal-time noise correlator^h(x,t)h(0,t)& for model I
with L532 andr50.5.
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Sec. IV indicate that the effective noise is spatially uncor
lated at least for the models we study here.

The effects of microscopic disorder has been discus
for single Brownian motors. Such disorder can be mode
in terms of a disruption of the perfect periodicity of th
ratchet potential@28#. For the models we consider here, it
natural to conjecture that the hydrodynamic behavior is g
erned by the same equation that governs the ASEP w
quenched disordered hopping rates. Incorporating the m
relevant terms due to such disorder leads to the follow
variant of the KPZ equation:

]h

]t
5c~x!]xh1n]x

2h1
l

2
~]xh!21z~x,t !, ~5.1!

with c(x)5c01c1(x), where c1(x) is a random variable
with short-range spatial correlations@17#. Interestingly, it has
been argued that the vanishing of the average kinem
wave velocity (c0 above! renders the pure KPZ fixed poin
unstable. As a consequence, the hydrodynamic propertie
interacting ratchets with disorder might be expected to
governed by a fixed point other than the KPZ or EW fix
points at special points or in special regions of parame
space. We are currently studying this problem.

Finally, the ASEP with open boundary conditions a
with particle injection and removal at the two boundaries
different rates has been studied extensively in recent ye
using different matrix methods@29#. The nonequilibrium
phase diagram of such systems contains distinct phases
different macroscopic properties. Such boundary conditi
are natural for the biological problem and it is interesting
speculate that control in such systems might be exerted
changing the rates at which motors are allowed to hop o
and leave the filament at either end. An investigation of th
problems is currently under way@30#.
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