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Universal properties of interacting Brownian motors
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We study the effects of interactions in ratchet models for one-dimensional Brownian motors. In these
models, directed motion of a single partioithe motoj is produced by subjecting it to the action of a
one-dimensional time-dependent asymmetric potential and thermal noise. We consider here the collective
behavior of a finite density of such motors that move on a line and interact with each other through excluded
volume interactions. We show that the density-density correlation function, calculated in the steady state,
exhibits dynamical scaling at long wavelengths and times. Our Monte Carlo simulations support the conjecture
that the hydrodynamic properties of interacting Brownian motors are governed by the Kardar-Parisi-Zhang
universality clas§Phys. Rev. Lett56, 889 (1986]. We demonstrate numerically that the effective noise
governing the stochastic dynamics in a coarse-grained version of our model has short-range spatial correla-
tions. Our results should be applicable to a wide variety of models for Brownian motors with short-range
interactions[S1063-651X99)01802-4

PACS numbg(s): 05.40.Jc, 87.16-e, 05.60.Cd, 87.19.Rr

[. INTRODUCTION and C, “particle fluctuating between states” models, in
which the particle is driven by Gaussian white noise, while
Molecular motors are proteins or protein complexes tha@n internal state of the particle determines the static asym-
transduce chemical energy into mechanical work. Ignoringnetric potential it experiences. This internal state is itself
molecular detail, these mototkinesins, dyneins, and myo- determined by a stochastic dynamics that does not obey de-
sing can be visualized as compact objects moving with a net&”@d balance. The combination of a single particle with an
drift velocity along a line(a tubulin filament for kinesins and asymmetridratche} potential, thermal noise, and an external
dyneins, an actin filament for myosinSuch motors play an forcing that violates detailed balance is called a thermal
important role in the transport of cargo along the axons ofatchet.
nerve cells, muscle contraction, and cell motility2]. The models we study here generalize models of §jpe
While the three families of molecular motors differ in incorporate a finite density of interacting particles. We ad-
detail, they share a few common physical properties. Firstdress the following question: What is the appropriate hydro-
there is a directionality to the motion of such molecules thatdynamic description of density fluctuations in a collection of
for linear motors, can be associated with the polarity of théhteracting Brownian motors on a ring? We will assume
tracks on which they move. Second, the tracks themselve§iese interactions to be of a simple excluded volume form,
can be idealized as rigid, periodic, one-dimensional strucalthough any interparticle interaction that is neither too long
tures[3]. Third, the irreversible conversion of the chemical ranged nor allows particles to interpenetrate should yield the
energy obtained from adenosine triphosphate hydrolysis int§ame results. At the level of nonuniversal properties, earlier
work breaks detailed balance. Finally, all molecular motorsvork has shown that excluded volume interactions can affect
Operate ina regime dominated by the randomizing effects df.)Otn the magnitude and the direction of the current in a non-
Brownian noise. Such noise has zero mean and hence cannbiyial manner[9]. In contrast, we study here the scaling
acting alone, produce directed motion. Molecular motorg)enaViOT of fluctuations in the nonequilibrium steady state of
must therefore “rectify” Brownian forces if they are to ex- Such an interacting system to extract universal features of
hibit a drift velocity in the absence of a net time-averagedmodels for interacting Brownian motors. Universality im-
force. The prob|em of mode|ing molecular motors can thug)”es that our conclusions should be independent of the de-
be set in the more genera| context of “Brownian motor’” or tailed nature of the potential Chosen, the density of interact-
“thermal ratchet” models for the extraction of useful work ing particles, and the switching rate between potential states,
from thermal fluctuations. except possibly at isolated points in parameter space. Most
Models for Brownian motors can be divided into the fol- aspects of the discussion here should apply to fluctuating
lowing three classd8—8]: A, “fluctuating force” models, in ~ force (classA) and particle fluctuating between statetass
which a point partic|e is p|aced in a periodicy asymmetricC) models as We”, provided the time correlations of the fluc-
time-independent potential and subjected to a stochasti¢/ating force or the stochastic interstate dynamics are not too
force with non-Gaussian correlatior; “fluctuating poten-  long ranged.
tial” models, in which the particle is driven both by Gauss- ~ For simplicity, we study latticized versions of oin gen-

ian white noise and a time-dependent asymmetric potentiafra) continuum models and examine the scaling properties
of the intermediate scattering functi@)(k,t) defined by
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whereN is the number of particlek is 2n#/L, n=0,+1, Consider now an apparently unrelated model, that of the
+2,...L/2, andL is the system size. Herép(Kk,t) is the  stochastic dynamics of a finite densjtyof hard-core par-
Fourier component with wave vect&rof the deviation from ticles on a line, which hop individually with rate (1e)/2 to

the mean local densitydp(X,t)=p(x,t) —{p(x)), with the  the right and (1-€)/2 to the left, provided the excluded
angular brackets denoting a time average. volume constraint is satisfied. Such a system, the “asymmet-

Transforming the density field(x,t) to a “height” field ric exclusion process'(ASEP for €#0, has a net particle
h(x,t) via p(x,t)=dh(x,t) and imposing helical boundary currentJ=ep(1—p). The symmetry breaking that results in
conditions onh(x,t) to satisfy the constrainy5p(x,t) a constant current in the ASEP is an explicit consequence of
=h(L)—h(0)=N, S,(k,t) can be related to the structure the asymmetry in the hopping rates. This symmetry breaking
factor is to be contrasted with the more subtle symmetry breaking

in the case of the ratchet models, where a net current is
S(k,t)=(sh(k,0)6h(—kt)), (1.2 obtained by switching between rates that individually satisfy
detailed balance.

Density-density correlations for the ASEP are known to
be governed by KPZ exponerts4] through a Bethe ansatz
solution of the associated quantum model in the fully asym-

L2t e metric (e=1) limit [15,16 and extensive numerical work in
S(k,)~k F(k), (1.3 the more general partially asymmetric case. Since both mod-
where» andz are scaling exponents afidis a scaling func- €IS share the feature expected to be most relevant to a hydro-
tion. dynamic description, the existence of a nontrivial density-

The basic result of this paper is that these scaling propeidépendent current, it is reasonable to conjecture that they

ties are described by the Kardar-Parisi-Zhaidz) [10] should belong to the same universality class, irrespective of

where sh(k,t) is the Fourier transform ofi(x,t) —{(h(x)).
For smallk and larget, i.e., in the hydrodynamic limit, if
S(k,t) exhibits dynamical scaling, we can write

equation. This Langevin equati¢o] the fact that the detailed origin of the symmetry breaking is
different in each case.

dh 5 A 5 The organization of this paper is as follows. In Sec. Il we

77~ vVh+ S (Vh)"+4(x.t) (1.4 describe the two models we study in this work. Section Il

discusses the relevant theory. We prove that the current as a
describes the long-time, long-wavelength behavior of a numfunction of density is symmetric about half filling for a large
ber of nonequilibrium systempl1,12. Equation(1.4) is  class of interacting ratchet models, including ours. We re-
written in a form appropriate for surface models, whereview briefly previous work on driven diffusive systems and
h(x,t) is the height, relative to e-dimensional substrate, of Provide a(nonrigorous derivation of a continuum equation
a growing interface anq’(xyt) represents Gaussian white for the time evolution of the particle denSity. In Sec. IV we
noise. This equation was Origina”y proposed as a generawjescribe the Monte Carlo simulations we have performed to
zation of the Edwards-WilkinsodEW) equation[13] (\»  test dynamical universality in interacting Brownian motors.
=0 in the abovito describe the interfacial width of clusters We present conclusions and possible directions for further
in the Eden model as well as the scaling properties of severgtudy in Sec. V.
other models for interface growth. The KPZ and EW equa-
tions govern distinct universality classes of dynamical be- Il. MODELS
havior with scaling solutions characterized by the exponents In the simplest versions of the fluctuating potential mod-

z and - The exponenty det_ermlne_s the Iong-w_avele_ngth els [5,6,8 individual motor particles experience a time-
properties of equal-time height-height correlations in the

. X dependent potentiadV(x,t)= »(t)U(x) in addition to ran-
steady statéthe conventional roughness exponents re- ; ; .
N ) ; dom Brownian forces with zero mean value. H&iéx) is
lated to » throughn=1-2«), while z describes the wave-

vector dependence of relaxation functions. For the KPZperIOdIC with period/, i.e., U(x+#) =U(x), and an asym-

equation, owing to the existence of a fIuctuation—dissipatior{J]eerfgg 2;3((;203 i(; fx,ol\lli.r’nlé((dxz)i;Js(t;é(rzés-lt-irc]:eotrln(;gt:rfrﬁ)ii?s--
theorem, these exponents can be obtained exactlgfot ' 9 y

and take on the values=3/2 and»=0. The exact solution E?fgg:}%?gg;:ggt';:g(g';V?g;hr;f:ﬁﬁvti?ﬁ V?;L\J/ieosug E\j/l\?odrkllon
of the linear EW equation yields=2 and%=0. g P

An intuitive way of understanding the relation of models gg?r'lgtes:ﬁg'(ithrgm'an motors, we will assuti¢x) to be
for interacting Brownian motors to the KPZ equation is the

following. Coarse-grain microscopic configurations of such U(x)=ax (0<x<a/)
models in space and time. At spatial scales larger than the 2.1)
repeat distanc€ of the periodic potential and on time scales =b(/—x) (a/<x</), '

much larger than the typical time scateover which the

potential changes, the system will appear to have a constamtith a,b>0,aa/=b/(1-a), anda<1. The switching of
density on average, as well as a constant current. Superinthe potential occurs independently of the state of the motors,
posed on this constant density are spontaneous fluctuatiotisus breaking detailed balance. Together with the lack of
that obey a local conservation law. The effects of interparfeflection symmetry iJ(x), this switching generates a net
ticle interactions at the largest length scales can be summaarticle current. Therefore, Brownian motors exhibit macro-
rized in the following observation: These density fluctuationsscopic motion along a periodic potential by extracting useful
are convected with a speed that depends on their magnitudeork from nonequilibrium fluctuations.
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configurations of the motors on the lattice aA@{ o}) is the
energy of the configuration. The switching of the potentials
occurs stochastically and is governed by an exponential dis-

tribution of waiting times.

The parameters in the models are the following. Each
period of the potential containg lattice sites, all of which
we assign to the segment of the potential with positive slope.
The length of the systerh is measured in periods of the
sawtooth. The maximum height of the sawtooth potential is

V and we define = ex — VIkgT(W—1)]. Finally, the param-
etersPy; andP, represent the probabilities that the potential

changes frompy=0 to =1 and vice versa.

In terms of these parameters the hopping probabilities on
M/W the sawtooth are chosen to be
f

—_— if 0<i<W-1
®) o 1+r
Pli—i+1)= 1
FIG. 1. Schematic representation of models. The filled circles —  if i=W-1,
represent particles. Ia), depicting model I, hard-core particles can L1+ rw-1
sit on either a pinning potentidhere a skew sawtooktor a flat
potential. In(b) model Il is shown. The particles can sit on one of (1 i .
two sawtooth potentials, which are shifted relative to each other by 1+r if 0<i<W-1
half the potential period. In both cases the switching between po- P(i+1—i)=
tentials is configuration independent, while the rates for the par- rw-1 .
ticles’ movement on each of the potentials satisfies detailed balance. W if i=W-1,
\

We can see how this current arises with the followingyhere we have indexed the lattice sites from 0 at the poten-
argument. In the “flat” state of the potential for which a1 minimum.

=0 [see Fig. 18)], a single particle will diffuse isotropically.

When the potential is switched to the “up” oj=1 state, it

is more likely to be found in a region of space where it

experiences a net force to the left than to the right. Repeated A number of driven lattice gases with excluded volume

cycling betweenp=0 and =1 states generates a net mo- interactions exhibit a current densififp) that is symmetric

tion of the particle. aboutp= 3. Two examples are the ASHBr the biased ran-
Our first model, which we will call model I, generalizes dom walk, whereJ(p) is parabolic aboup=1/2, and mod-

the above model for the action of a single Brownian motor toels with strong disordef17], where the current is a more

a finite numbenN of interacting motors on a one-dimensional complicated function of density.

lattice. These motors hop to unoccupied nearest neighbor This exact particle-hole symmetry is a feature of the mod-

sites with rates determined by the discretized potential in Ecels we study as well and can be obtained through simple

(2.1). Our discretization ensures that a motor occupies onlyrguments. Consider a finite densityf particles moving in

one lattice site at a time and the hard-core constraint implieghe time-dependent ratchet potenti&lx,t) defined in the

that at most one motor occupies a single lattice site. preceding section. The time-averaged particle current can
Our second model, model Il, differs from model | in the only be a function of the time-dependent potentx,t)

choice of the two potential states experienced by the motorsind the density. The statement of particle-hole symmetry is

Each particle now experiences a potentidl(x,t) then

=n(t)U(X)+[1— 5(t)JU(x+//2). The flat potential in

model | is thus replaced with a shifted version of the periodic J(p;V(X,1))=I(1=p;V(x,1)), 3.1

potential. In this case the current is a result of the particles .

sliding to the valley of the sawtooth. When the potential isWhich relates currents at densitipsand 1-p for the same

switched, particles in energetically unfavorable locationgmicroscopic time-dependent potential.

slide to the valleys of the new potential. In both models Note now that the relation

;evpefggzr& SLrtrr;it.5W|tchlng procedure results in a net time JpV(x,1)=—I(A— p: —V(x,1)) 3.2

We use periodic boundary conditions in the numericaly,|4g exactly. To see this, consider the one-to-one mapping

simulations described here. In both models an elementarMe,[Ween particle configurations at densityand “hole” or

step consists of either an attempt of a particle to hop to avacancy” configurations at density 4 p, where holes are

Felgh?orlng ‘?te obr ?n attempt ]E.O sw![t'ch the p:ptentgll.t Tlhe ssigned to sites that are unoccupied in the particle configu-
ransition rates between configurations satisty detailedyiion Every particle hop, say to the right, corresponds

balance ~ with ~ Metropolis  rates, P({o'}—{a}) uniquely to the hopping of a hole in the opposite direction
=min(1,exgH{o'})—H{o})]). Here {o} indexes allowed (left) at the same rate. The hole current thus precisely equals

Ill. THEORY
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the negative of the particle current. The hopping rates for the The exact conservation of particle number must hold for
holes can be obtained from the hopping rates for the particlethe coarse-grained density field and can be expressed in the
by reversing particle hopping rates about each bond. It iform of a continuity equation

easy to see that such rates can be derived from the potential

—V(x,t) for the Metropolis rates used in this paper and more dp(x,t)

generally for any update scheme that uses rates that satisfy a — 0, d(p(X,1),0xp(X,1), . . ), 3.6
detailed balance.

To prove Eq.(3.) it is thus sufficient to show where J(p(x,t),d.p(x,1), ...) is the particle current. This

current is, in general, a function gf(x,t) as well as its
J(p;V(x,1))=—I(p; = V(X,1)). (3.3 gradients. Decomposing the density field as

A strategy that works for the potentials we consider here is to L

consider the parity transformed potentidf(x,t), obtained p(X,t)=po+ dp(X,t), f dx dp(x,t)=0, (3.7

from the definitionVR(x,t)=V(—x,t). Such a parity trans- 0

formation is equivalent to interchanging the definitions of

left and right and cannot alter the magnitude of the curren We can expand

We thus have Ip(x,1),,0(x,0), .. .)
I, VR(x,1)==J(p,V(x,1)). (3.9 1

=J(po) = Codp(x,t) = 5C1(Ip)?

Since V(x,t) is not reflection symmetric, this relation be-

tween currents for different ratchet potentials related to each —Dadydp—L(x,t)+---. (3.8

other by a parity transformation is a nontrivial one.

For sawtooth potentials of the type defined in E&.1),  Herec, is the “kinematic wave velocity” or the group ve-
VR(x,t) and —V(x,t) are related through a trivial shifof  locity with which density fluctuations in the system are con-
aa/ in they direction and”(1— «) in thex direction]. This  vected,c, is the coefficient of the relevant nonlinear tern,
shift cannot change the net current as it merely corresponds a diffusion coefficient, and(x,t) represents the effects of
to a choice of the zero of the potentiahich is irrelevant to  random fluctuations. Restoring these terms to the equation of
the calculation of forces and hence hopping ragesl of the  motion and ignoring higher-order irrelevant terms, we obtain
origin. Putting these results together we now have an equation derived by van Beijeren, Kutner, and Spohn in

the context of one-dimensional driven lattice gasks:
I(p, = V(x,1)=(p,VR(x,1))= = I(p,V(x,1)), (3.5

dop(X,t)

thus proving Eq(3.1). i~ CodxOp(X, 1)+ C18p(X,1) dxIp(X,1)
While our proof is exact for sawtooth potentials of the
type discussed hefe@nd more generally for periodic poten- +Dﬁ§6p(x,t)+(9x§(x,t). (3.9
tials whose Fourier coefficienta(,b,,) are related through
tan(nd)=a, /b, with § a non-trivial anglé we believe that This equation without the noise tefice., £(x,t) =0] was

particle-hole symmetry may hold more generally in similaroriginally studied by Burgers in the context of the one-
lattice gas models for interacting Brownian motors. Indeeddimensional Navier-Stokes equation. The correspondence
for the disordered fully asymmetric exclusion process, suclbetween the KPZ equation and the noisy Burgers equation
particle-hole symmetry holds to a high degree of numericatan be seen as follows. We first perform a Galilean transfor-
accuracy{17]. This feature is not well understood, although mation on the Burgers equation to remove the linear term in
there have been recent attempts at a proof of this reE8lt  9,6p; this is equivalent to transforming to the comoving
We note in passing that there do exist excluded volume modrame of the density wave. Usingp(x,t)=d,h(x,t) and
els of motors that do not display particle-hole symmé¢®ly  substituting in Eq.(3.9), we obtain the KPZ equatiofEq.
These models, however, are not lattice gas models but cori.4)].
tinuum ones where the numerical discretization is not scaled To map particle configurations in our lattice model to
to the particle size. height configurations, associate a surface element with slope
We now describe a phenomenological derivation of thel to a particle and a slope of1 to a vacancy or hole. The
KPZ equation from simple hydrodynamic argumefig]. dynamics of the height field is related to the dynamics of the
Consider our microscopic model for interacting Brownian particles in the following way: A patrticle hop to the left from
motors and coarse grain the density field of the interactingsite i is identified with an evaporation event from site
motors over the microscopic period of the potential. The while a particle hop to the right corresponds to deposition or
density field is now uniform on average, with a time- growth at sitei+1 [19-21. A net current in the particle
averaged value opy. Coarse graining in time over time language then translates into a surface that grows on average
scales larger than the periodl over which the potential at a constant rate. This mapping between particle configura-
changes eliminates the microscopic time scale associatetbns and height configurations follows the “single-step”
with the switching of the potential. At length and time scalesmodel defined in Ref.20], although the underlying particle
much larger thar” and 7, we are dealing with a system that dynamics that generates the dynamics of the height field is
is, on average, uniform in both space and time. more complicated in our case.
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Critical exponents are typically measured through corre-  0.00 |- ' ' .
lation functions. In our simulations we measured the relax- ' o L2256 .
ation function[14] %t " =128 s
002 - =64 o
“ - ~ - 2 L=32 *
D(k.t)= (p(=k.0)p(k,)) = (p(=k,0)(p(k,1)) ‘i“ .
" (p(=k,0)p(k,0)—(p(—k,0){(p(k,0)) oot L S
s,(k.) s i K
= . — - “A * -
s,(k.0) 0.06 . .....
AA 4
in the comoving frame of reference. Althoudhis properly . o
a function of the two variablek andt separately, the dy- -0.08 ¢ w 1
namical scaling hypothesis suggests that it can be written in
the form ®(k*t) for an appropriately chosen As shown 010 , . , ‘
initially by Forster, Nelson, and Stephé82] for the ran- 0.0 0.2 0.4 0 0.6 0.8 1.0

domly forced Burgers equation and later by Kardar, Parisi,
and Zhand 10] for surface growthz is 2 in one dimension.
The free-field or Edwards-Wilkinson value 2s=2 [13].

In addition, we measured the value of the hydrodynamic
exponenty through the steady-state structure factor

e

FIG. 2. Dependence of the steady-state curdép) on the av-

rage density of particles for model | with 3& L <256.

S(k) = lim (h(t)h_ (1)),

t—soo

where

tor S(k), respectively. In order to discount small wavelength

correlations of the density due to the potential shape, we
coarse grained the density over one potential period by sum-
ming the occupations of the interior sites and assigning this

number to a singléreduced site. The largest lattice we con-

sidered in detail had =256 wells; the discretization to 10

1 LW
he(t)= ——=> [h;(t)—(h;(t))] &'k
W(t) (LW)llzjgl[ iD= (hi(1))]
The structure factor diverges for sméllask 2" 7, where
=0 for both the EW and KPZ equations.

An estimate of the effective dynamical

sites per well implies that our systems had at most 2560
lattice sites.

exponent

Z.+¢(L,p) was obtained in the following way. The data for
d(k,t) for a given density and system size were plotted as

functions of the scaled variabl&$t for variousz. The value

IV. COMPUTER SIMULATIONS

of z that provided the best visual collapse of the data was

taken to bez.¢;. Examples of this data collapse are shown in

In this section we outline the Monte CarlMC) algo-

Figs. 4 and 5 for models | and Il at half filling fdr=128,

rithm used in our simulations and present our numerical reyielding z.¢;=1.60 and 1.59, respectively. For both models,
sults. In our simulations, we measured time in units of MCthe relaxation function generically has two distinct branches.

steps(MCS), where a single MC step consistshftycles of

For the smallest value &f, k=2/L, the relaxation function

the basic algorithmic step. In each cycle we attempted eithegecays more slowly than for larger valueskofBoth figures
a switching of the potential or a particle move. Our mostcontain data fok=2j/L for j<5. Forj>1 the data col-
extensive studies were done with parameter values thahpse to high accuracy onto a single curve. This separation of

maximized the current, i.e., at half filling for the models
considered here. This choice minimizes the crossover from
the EW regime to KPZ behavior sineeis proportional to
the curvature of thd vs p curve, which is maximized at half
filling.

We usedW=10 lattice sites per well in all of our simu-
lations. For model | we took =0.05, Py;=0.03, andP,
=0.04. For model Il the parameter values used were
=0.01 and Py=P;,=0.02. Typically we waited
(2x 10" —(5x 10" MCS for the system to equilibrate be-
fore recording data for currents and correlation functions.
The quantities® (k,t) and S(k,t) were averaged over 10
configurations forL <128, while we averaged over<3L0®
configurations foiL = 256.

The J(p) vs p curves for models | and Il are shown in
Figs. 2 and 3. The symmetry of the curves abpetl/2 is
very accurate for largé, in accord with the theoretical ex-
pectation of particle-hole symmetry.

We measured the critical exponents of our modelad »
through the relaxation functiod® (k,t) and the structure fac-

0.00
) o L=256 3
‘i = =128 :
g . L=64 :
005 a =32 s -
[N ¢
X ;
t ’
n
u ¢
-0.10 - W .
\-A »
[v3 4
Jp) X g
-, /.‘
-
-0.15 | -, 4
hA ’
‘A
As, N
_0.20 1 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0
P

FIG. 3. Dependence of the steady-state curdp) on the av-

erage density for model Il with 32<L <256.
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10 ; ; . 2.1
’-,‘ * L=256
% L=128, N=640 ] = L=128 i
0.8 4 * L=64
& i aL=32 }
19 ¢ 1
06+ 1 }
t ; ;
q)(k,t) ze‘”(p) i%
% i +
0.4 | . 17l { 5 I ]
' RS b I
02 | ‘ 1 I % . i % i
15 * * ' *
0.0 ' ' LI 0.0 0.2 0.4 0.6 0.8 1.0
0.0 100.0 200.0 B 300.0 400.0 500.0 p

FIG. 4. Relaxation functiod (k,t) for model | forL=128 and
p=0.5 plotted as a function of the scaled variakfe for z=1.60.
We show data for the five smallest values ot 27j/L, with j
=1,2,3,4, and 5.

the relaxation function into two branchésith j=1 the spe-
cial casg is also a feature of the single-step mof20].

We have carried out this analysis systematically for
=32-256 as a function op. The effective exponents
Z.¢(L,p) for models | and Il are plotted as functions @in

FIG. 6. Effective exponert¢(L,p) plotted as a function o
for model | and systems of size 82 <256. Note the systematic
decrease Of.¢; asL is increased at constant density.

the value?, consistent with the predictions of the KPZ equa-
tion.

We have also calculated the hydrodynamical expongnt
through the time-independent structure factor in E311).
For both models we foung=0.0=0.01 for all densities and
all system sizes.

If one assumes that the KPZ equation describes these

Figs. 6 and 7, respectively. The conservative error bars remodels then one can in fact predict the dependence of the
flect the somewhat subjective procedure of identifying themeasured effective exponemt; on L, following recent
“best” value of z by inspection. However, the systematic york by Neergaard and den Ni[23] on crossover scaling
dependence of this effective exponent on bptland L is  functions appropriate to one-dimensional growth models in

quite striking. First, it is clear that the data support the conthe KPZ universality class. Neergaard and den Nijs provide
C|USIOnZeff(L,p) :Zeff(L,l_ P), consistent with the general the asymptotic form

particle-hole symmetry discussed above for the current. Sec-
ond, there is a systematic decrease of the effective exponent
Z.i¢ @sL is increased for alp+# 0, with the smallest values
occurring atp=0.5, as expected theoretically. The smallest

m=A/L%+B/L%. 4.1

value ofz was found to be 1.580.01 for model | and 1.56
+0.01 for model Il, calculated in both cases for 256. We
conclude that in the thermodynamic lini{p) approaches

10 : : :
L=128, N=640
08 i
06 - B J
A
Bk, ) L
'
04| iy
02 R
:’-‘%N‘*»—k
0.0 L R v vvre
0.0 50.0 1OZO.O 150.0 200.0
k't

FIG. 5. Relaxation functio® (k,t) for model Il forL=128 and
p=0.5 plotted as a function dft for z=1.59. The values df are
the same as in Fig. 4.

Here A andB are constant for fixed KPZ coupling constant
N\, mis the mass gap of the associated fii@gésizelL) spin
chain, andz, and z; are the dynamical critical exponents
associated with the EW and KPZ universality classes, i.e.,
Zo=2 andz;=1.5. The effective exponert.¢;(L) is ob-

2.10 T T T
® | =256
= L=128 B
g + =64
I s L=32
1.90 Ef B
Z,4(P) &‘
1.70 : I { '
#1 I P ogip ? i
: : f:f s
SRR i
1.50 : : : :
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Effective exponer(L,p) for model II.
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1.70 that the effective equation governing the dynamics of the
height variablen(x,t) in our models can be written as
dh )
s | | E=F(axh,axh, o) F (Xt . 4.3
We have grouped the terms governing the deterministic evo-
24(L) lution of the surface intd(a,h,d2h, .. .), ingeneral allow-
ing for more complex(although irrelevant in the hydrody-
1.60 - 1 namic limit) terms than those retained in the KPZ equation.
We have also separated the noise terms ipfw,t), which
we assume, without loss of generality, to have zero mean
value.
155 s . Evolving the surface configuration at timeforward to
0.0 100.0 L 200.0 3000 h(x,t+At), we can write the effective noise term as
FIG. 8. Effective exponent.;(L,p) plotted as a function of. h(x,t+At)—h(x,t)— F(ﬁxh,ai, ..OAt
for p=0.5 for model I. The curve is a fit to the functional foreh2) AL =n(Xt).
obtained from the KPZ equation. (4.4
tained fromze¢¢(L) = — d(Inm)/A(InL). If z¢¢¢is close to 1.5,  Note that this procedure generates an ensemble of values for
simple algebra gives the leadihgdependence as the stochastic noise term(x,t). We can now compute the
equal-time correlations of the noise by averaging
Zer(L)=1.5+C/\[L, (4.2 (n(x,t)n(x',t)) obtained from Eq(4.4), by evolving sys-

tems initially chosen to be representative of the steady state

whereC is a constant. This indicates that the approach to th§26].
asymptotic value of 1.5 is of a square root form. Figures 8 To implement this procedure, we generated a sequence of
and 9 show that an approximate fit to such a correction ik typical steady-state configuration€{,C,, ...,C,) for
consistent with the data, although there are large inherernhodel | by evolving the system for»210* MCS. Each of
errors in this procedure given that the measuzgd is ob-  these configurations in turn was evolved for a short tilrie
tained directly from a simulation. using m different initial random seeds. Such a procedure

We have implicitly assumed that the effective noise gov-generates inequivalent histories of the system starting from
erning the behavior of interacting Brownian motors is shortthe same steady-state configuration. The deterministic part of
ranged in both space and time. This is an important issughe evolution for theith typical initial profile can then be
since correlated noise is known to affect the scaling properextracted from
ties of the KPZ equatiofi24]. We have studied the validity
of this assumption through an approximate numerical proce- 1> )
dure related to the “inverse method” introduced by Lam and ~ Fi(dxh,é%h, .. .)At= EE [hj(x,t+At)—hj(x,0)].
Sander[25] to study the effective hydrodynamic equation =1 4.5
governing the behavior of interface models in the KPZ and '

EW universality class. To illustrate this procedure, assumeynce this has been obtained, the equal-time noise-noise cor-
relation function can be constructed for each of @jecon-
figurations by averaging over stochastic histories. We also
average over the ensemble of initial steady-state configura-
tions. Our results are displayed for model | with=32 in

Fig. 10. It is clear that any spatial correlations are extremely
165 1 i short ranged and clearly not of the power-law form required
to affect the exponentsand » [24,27].

1.70 T T

24(L) V. CONCLUSIONS

1.60 L § In this paper we have presented numerical evidence and
intuitive arguments to support the conjecture that the hydro-
dynamic properties of interacting Brownian motors belong to
the universality class of the Kardar-Parisi-Zhang equation.
This conjecture was motivated by the reasonable guess that

155,% 100.0 2000 300.0 microscopip g:onfiguration; in such models, upon appropriqte
L coarse graining, should yield the same macroscopic physics
as the ASEP.
FIG. 9. Effective exponert,;(L,p) plotted as a function of We now discuss models of typédsand C defined in the

for p=0.5 for model II. As in Fig. 6, the curve is a fit to E¢t.2). Introduction. In view of the generality of the results we de-
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Sec. IV indicate that the effective noise is spatially uncorre-

r e o ' [ il lated at least for the models we study here.
,-ﬁ\ o The effects of microscopic disorder has been discussed
= for single Brownian motors. Such disorder can be modeled
E 1.0 b E in terms of a disruption of the perfect periodicity of the
= ratchet potential28]. For the models we consider here, it is
> . . . .
= natural to conjecture that th_e hydrodynamic behavior is gov-
\ erned by the same equation that governs the ASEP with
60 quenched disordered hopping rates. Incorporating the most
0.1 - E relevant terms due to such disorder leads to the following
ORI 0 | CPoP0000R] variant of the KPZ equation:
-16 -12 -8 -4 0 4 8 12 16 Jh N
X _ 2 2
E—c(x)axm— vayh+ E(axh) +Z(x,1), (5.1
FIG. 10. Equal-time noise correlaton(x,t) »(0,t)) for model |
with L=32 andp=0.5. with ¢(x) =cg+cq(X), wherec,(x) is a random variable

with short-range spatial correlatiofis7]. Interestingly, it has
scribe here, which depend only on the fact that expanding theeen argued that the vanishing of the average kinematic
uniform particle current in the density field to second orderwave velocity €, above renders the pure KPZ fixed point
yields a relevant KPZ nonlinearity, we would expect that theunstable. As a consequence, the hydrodynamic properties of
hydrodynamic properties of these models should be govinteracting ratch.ets W|th disorder might be expected to be
ered by KPZ exponents, as is the case here. The only cav@overned by a fixed point other than the KPZ or EW fixed
ats are the following. In general, while KPZ scaling would POINts at special points or in special regions of parameter
be expected in the asymptotic limit, the approach to this limitSPace- We are currently studying this problem.
may be obscured by crossover effects. These are model spe- Finally, the ASEP with open boundary conditions and

cific and, in general, some optimization might be required forwith particle injection and removal at the two boundaries at

such asymptotic scaling to be easily visible. Also, the coef—different. rates has bgen studied extensively in re_c;ent years,
ficient of the nonlinear term may vanish at isolated points using different matrix method$29). The nonequilibrium

in parameter space for general models. In such cases, OR%ase diagram of Sth systems contains distinct phase_s_ with
would expect EW exponents precisely at those points angl ferent macroscopic properties. Such boundary conditions

crossover behavior in their vicinity. Finally and perhaps mosf'€ na}tutralﬂl:o; the tt)|<)llqg|cal ﬁmblim and It ;]St |tr)1terest|?gdt%
importantly, the effective noise governing the microscopicSpeCLIae at confrol In such systems might be exerted by

degrees of freedom must have only finite-range correlationgh‘"‘nglng the rates at Wh'qh motors are aIIovv_ed to hop onto
in space and time. For the KPZ equation with colored noiseand leave _the filament at either end. An investigation of these
a smooth variation of dynamical exponents suchzasas problems is currently under wd§30].

been predicted if the noise has sufficiently long-range corre-
lations[24]. It is not obvious that the hydrodynamic proper-
ties of interacting Brownian motors with an effective colored We have benefited from conversations with R. Mukho-
noise can be mapped directly onto an appropriately generapadhyay, F. Jicher, J. Prost, and M. Siegert. This research
ized KPZ equation. However, we reiterate that the results ofvas supported by the NSERC of Canada.
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